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Abstract—This paper presents the results of an experimental investigation of thermocapillary and thermo-
gravitational flows in a horizontal layer much thicker than the hydrodynamic boundary layer at the
free surface. There is a linear heat source beneath the free surface and a heat sink at the opposite vertical
face. At a constant heat flux, boundary layers develop at the free horizontal and the cooling vertical
surfaces. Velocity and temperature profiles measured in the boundary layers are presented. Analytical
solutions are obtained for the boundary layer at the cooling surface and beyond the boundary layers. The
patterns of periodic thermocapillary flows for periods shorter than 24 s are studied : the actual and mean
temperatures, the actual and mean values of the friction coefficient at the free surface, the variance of
temperature fluctuations, space-time correlation functions, and the boundaries of the propagation of
periodic flows.

INTRODUCTION

THERMOCAPILLARY and thermogravitational flows
originate in a horizontal layer at any horizontal tem-
perature gradient, however low it may be. The
relationship between thermocapillary and thermo-
gravitational forces in a plane-parallel flow (the mode
of heat conduction [1]) can be characterized by the
complex k = Ma/Ra = b/Bpgl®. With an increase in
the layer thickness the effect of the thermocapillary
forces on the total flow in the layer decreases.

In different modes of flow, when, for instance,
boundary layers get organized, the interaction
between these forces is more complex and shows up
near the free surface of the liquid.

The interaction between thermocapillary and
thermogravitational forces can be expected to be still
more complex in unsteady-state modes of flow. The
surface thermocapillary forces caused by the
reduction of the surface tension with increasing tem-
perature have the nature of molecular interactions
and are less persistent as compared with mass thermal
gravitational forces.

Kirdyashkin [1] presented an experimental inves-
tigation of the pattern of periodic thermocapillary
flows originating due to periodic variations in the heat
loading on the linear source at the free surface of
the liquid. The periodic flows develop in the plane
horizontal layer with adiabatic horizontal surfaces.
Instantaneous and mean temperature gradients along
the free surface and, hence, the friction on the surface,
were measured. The boundaries of the propagation of
periodic perturbations depending on the amplitude
and period of the loading variations were found. It is
shown that with ¢, < 35 s the thermogravitational

forces do not have any appreciable effect on the per-
iodic flow propagation along the surface. The survey
of studies of horizontal flows in a horizontal tem-
perature gradient is given in refs. [1, 2}].

In the present paper the results of considering
experimentally thermocapillary and thermogravi-
tational flows in a horizontal liquid layer are given
for the following conditions.

(1) A thermal and hydrodynamic structure in the
layer which is much thicker than the hydrodynamic
boundary layer at the surface at a steady heat flux
(the heat source is located at the surface ; the cooling
occurs near the opposite vertical face).

(2) The structure of the periodic thermocapillary
flows when ¢, < 24 s; the actual and averaged tem-
perature fields ; the actual and averaged velocity gradi-
ents at the surface and, consequently, the friction
coefficients; the second order moments (temperature
variance, space-time correlation functions); the
boundaries of propagation of periodic flows.

The study of the structure of thermocapillary per-
iodic flows is of interest in connection with the pros-
pect of obtaining high-quality materials and single
crystals.

EXPERIMENTAL FACILITY AND MEASURING
TECHNIQUES

The thermocapillary periodic flows were inves-
tigated in a volume of 96% ethyl alcohol of length
x, = 370 mm, height L = 105 mm and width =, = 150
mm with a free adiabatic surface of the liquid. The set-
up arrangement and the boundary conditions effected
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a  thermal diffusivity

b  temperature coefficient of surface tension
¢, heat capacity at constant pressure

g  gravitational acceleration

L height of a layer

Ma Marangoni number

¢  mean value of heat flux for the period
R(An,t) space-time correlation function
R(z) autocorrelation function

Ra Rayleigh number

t time

ty  period of heat flux fluctuation

T  temperature

T. temperature of vertical cooling surface
T, temperature in layer core

T, temperature of free surface

u  horizontal velocity component

NOMENCLATURE

v vertical velocity component
x, distance of propagation of periodic flows
¥, x, = vertical and horizontal coordinates.

Greek symbols

B coefficient of thermal expansion of liquid
u#, v dynamic and kinematic viscosities

p  density

o  coefficient of surface tension

T time shift
7,  coefficient of friction at the free surface.

Subscripts and superscript
max maximum
n parameter of layer core
0 free surface of liquid
- mean value.

in the experiment are given in Fig. 1. The experimental
set-up, the construction of which is presented in detail
in ref. [1], was made of optically transparent organic
glass.

As a periodic heat source, use was made of a ni-
chrome filament, 0.15 mm in diameter and 145 mm
in length, stretched between two rigid holders. The
nichrome filament was arranged horizontally at a dis-
tance of 5 mm from the vertical thermally insulated
face and at a distance of 0.2-0.3 mm from the free
surface.

The control system for a periodically alternating
heat flux is given in ref. [1]. The heat source power
can be regulated by the law

2nt
ty )’

where 0.2s <1< 100s.

Q = Q|+Q-| <I+Sln

2rt
to )

0=0(1+ sin

(

The amplitude of the heat flux power was regulated
within the range 0-45 W.

The constancy of the cooling vertical brass surface
temperature 7, was ensured by pumping thermo-
statically regulated water through the inner cavity of
the heat exchanger, the time averaged temperature
of which was maintained within +0.05°C.

The temperature of the liquid in the boundary layer
at the vertical cooling heat transfer surface was mea-
sured with a nichrome-constantan microthermo-
couple made of 0.05 mm diameter wires. The working
portion of the needle-type thermocouple extended
10 mm from the glass holder and was set parallel
to the surface. The other junction of the thermo-
couple was maintained at the ice melting temperature.
With the aid of a macroscrew, the thermocouple
was traversed horizontally and vertically. Its ver-
tical position was determined accurate to 0.01 mm
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FiG. 1. Flow pattern and boundary conditions in studying periodic flows.



Thermocapillary steady and periodic flows in a horizontal layer

by using a V-630 cathetometer. The thermocouple
traversed along the coordinate ‘x’ normal to the
cooling wall and was fixed by a clock-type indicator
with 2 pm division. The initial position of the thermo-
couple junction (a contact with the wall) was indicated
by the V-630 cathetometer and thereupon was refined
when constructing the temperature distribution across
the boundary layer: the point was determined at
which the linear temperature distribution in the wall
boundary layer intersected with the constant tem-
perature line, which corresponded to the local wall
temperature.

The temperature gradient on the free surface of the
liquid was measured using a differential micro-
thermocouple and fixed in the form of an analogous
signal. Its value was found from the formula

0T/ox = U,/KRAXx

where U, is the amplified part of the differential
thermocouple ¢.m.f., K the amplification factor of the
system based on the loaded resistance equivalent to
that of the thermocouple, R the thermocouple sen-
sitivity (uV °C-'), and x the spacing between the
junctions of the differential thermocouple.

The constructions of probes and the techniques of
measuring temperature and velocity in the ethyl alco-
hol layer were similar to those employed in ref. [1].
The only differences were in the methods of fixing
instantaneous e.m.f.s of the microthermocouple,
which were measured with the aid of a digital volt-
meter (with a sensitivity of 1 uV), which was also an
analogue-to-digital converter. After passing the
matching device of the KAMAK system, the volt-
meter signals were put into storage and pressed by
the dialogue computing complex DVK-2M.

Instantaneous local temperature drops in the layer
relative to the temperature of the thermostatically
regulated water, which cooled the heat exchanger,
were found from the formula 7(¢) = U./R, where U,
is the measured e.m.f. of the thermocouple. Discrete
realizations of instantaneous temperature drops
7(r) were recorded at the time instants ¢ = ih
(i=12,...,N), where h = I/f, is the discretization
step and f, is the discretization frequency. The fre-
quency of selection of the thermocouple e.m.f.s and
the file of numerical data N = 1024 were specified by
the programme. The following random statistic
characteristics of the discretized realizations of
instantaneous local temperature drops were cal-
culated: the mean values T=Z¥ ,T/N; instan-
taneous temperature fluctuations T°(f) = T(r)—T;
the gth central moment m, = [EY. ,(T;—TD)lg/N,
g=2, 3, 4; the variance m,= T'%; the auto-
correlation function R() = T'(f)* T'(t+1)/R(0);
the space correlation function R(An;t) = T(D)
- T5(t+1)/[R,(0) - R,(0)]V? where 7 is the time shift;
T1(¢) and T5(¢) the temperature values on the first
and second probes, An the spacing between the
probes along the x- or y-axis; the microscale of the
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time 7, determined from the equation of the para-
bola which approximates R(z) in the vicinity of 7 = 0,
R(@) = 1—1%<.

RESULTS OF MEASUREMENTS AND THEIR
ANALYSIS

Constant heat flux

At a constant heat flux from a cylindrical heater (a
filament) and under the boundary conditions in the
liquid layer indicated in Fig. 1, there exist two bound-
ary layers: at the horizontal free and cooling vertical
surfaces. The horizontal temperature gradient gives
rise to the thermocapillary forces

do <5T>
To= ET Ox 0
on the free surface. For ethyl alcohol do/dT = b =
9x10"*Nm™'deg™".

The boundary layer flow at the free surface results
from the interaction of thermocapillary and thermo-
gravitational forces.

Under the conditions of thermal and thermo-
capillary convection, the equations for the boundary
layer at the horizontal surface have the form

o w 0T  &u
M+W=ﬂya+va—y3 €))

oul T _ T

ax | dy e oy? @
du ov
FP + 5); =0. 3
The boundary conditions on the free surface (y = 0)
are
du 1de[0T oT

at x=x, and T= T,. The conditions at the edge
of the boundary layer can be elucidated if the laws
governing temperature variations in the layer core are
known. The layer core is understood to be the area
beyond the boundary layers.

In the layer core, any horizontal gradient, however
small, may give rise to horizontal flows which equi-
librate the temperature along the x-axis. For these
large-scale motions the viscosity forces are vanishingly
small.

For the layer core under steady-state conditions, it
is possible to assume in the first approximation that
the temperature in the horizontal section is constant,
i.e. the horizontal flow velocity is negligible [2].

Within the scope of this assumption, the tem-
perature field 7,(y) is formed in the layer core.

Heat removal is affected by the vertical cooling
surface, at which a free-convective boundary layer is
formed, with the flow in it being directed downward.
An oppositely directed flow (v,) should exist in the
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core of the layer. It can be assumed that in the layer
core v, = const., since ¢,(y) horizontal flows can occur
which, in the presence of the cooling vertical surface,
can give rise to a horizontal temperature gradient in
the layer core. Thus, the assumption that T,(y) yields
v, = const. in the layer core is valid.

The layer core is described by the equation ;

, éT, _ 82T,
"dy @yt
Under the boundary conditions: y=0, T'=T,;

y = oc, T'=0 the solution of equation (5) has the
form

a

&)

T,=T,e"" (6)

where ¢, < 0.

The temperature distribution occurring in the layer
core and corresponding to equation (6) is presented
in Figs. 2 and 3. This correspondence indicates that
v, = const. in the layer core.

Thus, in the outer part of the thermal boundary
layer at the free surface, the temperature varies by law
(6) and the heat flux at the edge of the boundary layer
is equal to zero; the normal velocity component is
v, = const. and the longitudinal component is u = 0.
Near the heater the temperature gradient along the
surface can attain large absolute values, and the
thermocapillary forces are much larger than the
thermogravitational forces:; as |87/dx|, decreases
away from the heater, the thermogravitational forces
become predominant.

Consideration will be given to the free-convective
boundary layer at the cooling vertical plate located in
the vertical section x = x,. The origin of the coor-

A. G. KIRDYASHKIN ef al.

dinates will be taken as follows: the y-axis is oriented
vertically downward from the free surface and the x-
axis—normally to the vertical surface.

The solution of the thermal boundary layer on the
cooling vertical surface is presented in the form [3]:

T=T.(0N+0(x;)). )

Then the boundary layer equation has the form
oT, 60 80 &9 g
e +e éy TR T Y ®

In the case considered, v8 < ¢vT, and the second term
of equation (8) can be neglected. Taking into account
that u « v, the term u(08/6x) can also be neglected.
Equation (8) will then take on the form

9

¢ T,
‘{ H=CI‘“’—2. (9)

v
oy

é

éx

Since the inertia terms can be disregarded owing to
their smaliness, the equation of the dynamic boundary
layer at the vertical wall can be written under the
Boussinesq approximation as

4

(3}
;oo

|

(10)

v

= Bygb.

v

(%

X
The boundary conditions for equations (9) and (10)
are

' 20
=0: vx0,9=8.(or ;———9’,);
dx

v=0,808=0. an

The magnitude of the velocity v, is obtained from the
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Fic. 2. (a) Profiles of the longitudinal velocity component () at the free surface of ethyl alcohol. {1_3)]

Temperature profiles over the layer height L = 105 mm, x, = 370mmand z, = 150 mmatQ = 17Wm

and at different distances from the heater: 1, x =28 mm;2, x = 60 mm; 3, x = 100 mm; 4, x = 170 mm;
S, x = 240 mm; 6, x = 280 mm.
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FiG. 3. (a) Temperature profiles over the layer height L = 105 mm, x, =30 mmfos 0 = 1TW m~!and

different values of x: 1, x =28 mm; 2, x = 60 mm; 3, x = 100 mm; 4, x = 170 mm; 5, x = 240 mm. 1, By

equation (23). (b) The temperature gradient 86/¢x at the cooling surface vs the y-axis. II, By equation
(24). (c) Temperature variations of the cooling surface over the height (). 1L, By equation (25).

equation
(-3

v(x) dx. 12

U, = —
iJ0
Since 8 « x,, then v > v, and for x » 4 it is possible
to assume that ¢ = 0.
Equation (10) is differentiated twice with respect to
‘x* and substituted into equation (9)

é'v  PBg 6T\ _
57-‘-05(—-5;)—0. (13)
Let
Bg( oT,
‘ R et —
4m? = o ( ) (14)

Since ¢T,/dy <0, then 4m* > 0. The general form
of the solution for the equation (D*+4m*)v = 0 at
v(0) = 0 and v(cc) =0 s

(15)

Under the boundary conditions (11) and 6(0) = 8,,
the solutions of equations (9), (10) and (12) are

p=csinmx+e™,

Bgb, —mx s
v=—go—se ™ sinmx (168)
f=0,e "™ cosmx a7
Bg0: v, dvam’x,
= mx, " a B 1)

Under the boundary conditions (11) and 86/0x = &,

at x = 0, the solution of the system of equations (9},
(10) and (13) will yield

61’
L W — (19)
2vm
6
8= — —e ™™ cos mx 20)
m
P9 . U.xy 0T,
= T hemt T g oy @n

As follows from equations (15), (18) and (21), the
condition v, = const. will be fulfilled when

oT, ¢ T,
o, ~ (oﬁ ) and # ~g..——.
oy oy

The validity of the adopted approximations, namely
the uniformity of temperature of the horizontal plate
for the layer core, the constancy of the velocity v, in
the layer core and the correctness of approximations
in solving the equations of the boundary layer at the
cooling surface, is assessed experimentally.
Experimental investigations were conducted in the
ethyl alcohol layer of height L = 105 mm, length
x; = 370 mm and width z, = 150 mm at a steady heat
flux on the filament Q@ = 22 W m~ . The results of the
measurements are given in Figs. 2-4. Near the free
surface, there exists a laminar boundary layer with
the thickness much smaller than that of the liquid
layer. Under the conditions of steady stratification,
there originate oppositely directed flows. The change
of temperature along the surface gives rise to the

22)
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thermocapillary forces on the free surface (Fig. 2).
The thermal boundary layer is also considerably thin-
ner than the liquid layer ; the temperature in the layer
core varies only along the coordinate '3’ and stable
stratification over the height of the entire liquid layer
is observed (Fig. 2). Near the cooling vertical surface,
a free-convective boundary layer develops (Fig. 4).

In solutions (16)—(21) the unknown parameter is
the velocity v,. The determination of v, involves the
closure of the solutions for the boundary layer at the
horizontal free surface and for the boundary layer at
the vertical cooling surface, the solution for the
boundary layer at the free surface not being obtained.
Therefore, the velocity v, will be found from the exper-
imental temperature distribution over the layer height
(Fig. 2 (b)).

According to the experiments (Figs. 2(b) and 3(a)),
the temperature distribution over the layer height can
be approximated by exponential relation (6)

T, =3.8¢ 552, (23)

It follows from equations (6) and (23) that
v.Ja= —5524 m~' and, consequently, ¢,=
—4.955x10"*ms~'at T = 25°C. The ratio v,/a being
known, the laws governing the cooling surface tem-
perature variations 0, and the temperature gradient
8, at this surface can be obtained from equations
(18) and (21).

Figure 3(b) presents comparison of the values of
the temperature gradient at the cooling surface cal-
culated by equation (21)

0, = 4290e~ %% (*Cm~") (24)

with those determined experimentally. A satisfactory
agreement of the predicted and experimental data is
observed.

The experimental values of the cooling surface tem-

8-8,(°C)

FIG. 4. The profiles of the velocity ¢ in the boundary layer
at the cooling surface at different values of y by equation
(16) or(19): 1, y = 2.58 mm; 2, y = 1424 mm; 3, y = 33.8
mm; 4, v = 54.4 mm. Temperature profiles by equation (17)
or(20):5,y =258 mm; 6,y = 1424mm; 7,y = 33.8 mm;
8, ¥ = 54.4 mm. 9, experimental values of temperature.
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perature correspond to the distribution of 8, predicted
by equation (18) in terms of the known quantity v,/a

0, =296e 4  (-C) (25)

as follows from Fig. 3(c). The comparisons given
indicate the validity of relations (22).

Figure 4 presents a comparison of the experimental
temperature profiles and those determined theo-
retically following solution (17) or (20) at the known
value of v,/a. A good agreement of theory and exper-
iment is observed (Fig. 4). The figure also gives theor-
etical velocity profiles at the cooling surface predicted
by equations (16) and (19).

Thus, the assumptions on the hydrodynamics and
heat transfer in the layer core and the cooling surface
adopted in solving the problem are quite permissible
and allow an analytical estimate of the behaviour of
thermal gravitational flows in these regions.

From the temperature and velocity profiles mea-
sured experimentally over the layer height, it is poss-
ible to determine the heat fiux directed horizontally

S
Q=c,p L ul dy.
According to the measured velocity and temperature
profilesat x = 170 mm, Q = 17 W m ™', which is 30%
smaller than the heat flux of 22 W m~! supplied to
the filament.

The difference between the heat fluxes is associated
with heat losses through the lateral faces and through
the upper air layer. These losses (30%) could not be
avoided. The greatest heat losses are to be expected
in the vicinity of the heater, where the temperature
gradients are maximal. The same heat losses were also
observed at the heat flux alternating periodically on
the horizontal filament.

Periodic flows at 1o =3s

The structure of periodic flows was considered in
the absence of the constant component of the heat
flux 0,

2
Q=Q(1+sin11”—'> (26)
0

and when 3 s < ¢, < 24 s. The working volume was
filled with 96% ethyl alcohol and the heater, i.e. a
nichrome wire, was immersed to a depth of 0.2-0.3
mm from the free surface. When the filament is located
near the surface and Q is maximum, the liquid near
the heater becomes superheated and evaporates. The
measurements were performed over a period of 3.5 h
after the periodic heat flux had been supplied.

The experimental results obtained for £, =3 s,
L=105mm, x, =370 mm, z = 150 mm, 0 =22 W
m~', T, =21.7°C and f, = 10 Hz are given in Figs.
5-16. The free surface temperature was measured by
two thermocouples, one of them fixed and the other
moving along the x-axis, while remaining in the same
plane z = const. The cold junctions of the thermo-



Thermocapillary steady and periodic flows in a horizontal layer

1655

t(s)

F1G. 5. Variations of the free surface temperature in time for different distances (x) from the heater in the
layer L=105mm, x, =370 mm, § =22Wm™', T, = 21.7°C, t, = 3.

couple had the temperature of the thermostatically
regulated cooling water, which circulated in the cavity
of the vertical heat exchanger. In such a manner
instantaneous temperature drops in the layer were
measured with respect to the temperature in the vicin-
ity of y = L and, consequently, with respect to the
cooling surface of the copper vertical heat exchanger
at y values greater than the boundary layer thickness
at the free surface near the cooler.

Figure § presents instantaneous values of the free
surface temperature at different distances from the
periodic heat flux source and the phase shift at differ-
ent values of ‘x’. The temperature varies in time
periodically at different x values, decreasing in ampli-
tude during removal from the heater. The amplitude
and the mean temperature for different values of ‘x’
are given in Fig. 6. From the plots of Figs. 5 and 6,
instantaneous temperature values can be found for
different values of ¢/t, and x.

Figure 7 illustrates phase shift-induced variations
in the maximum temperature t,/t, at different values
of x and the phase rate of the maximum temperature
uy. The resolving power of temperature measurements
made it possible to trace the phase shift up to x = 25
mm, in this case ¢,/to = 0.7, and the amplitude of
temperature fluctuations amounted to 0.05 T.

When 5 mm < x < 25 mm, the mean temperature
gradient along the surface in the periodic flow region
is small in magnitude and varies monotonously
@T/ox < 0).

Measurements were taken directly of the instan-
taneous values of the temperature gradient (877/0x),
on the free surface and the mean values (E—T/ax)o were
determined.

The friction coefficients due to the thermocapillary
forces and velocity gradients norma! to the surface
were respectively obtained from the relations

o _ (u) _1do(oT
Pl (ay>o =odr (E) @N

Their values on the free surface vary periodically in
time at different distances from the heater (Fig. 8).
When x < 22 mm, the change takes place in the sign
of the quantity (67/0x), for the period of fluctuation
and, consequently, in the direction of the thermo-
capillary force vector. The mean value of the friction
coefficient is always T, < 0 (Fig. 9).

Figure 10 presents the autocorrelation functions
of temperature fluctuations on the free surface. At
different distances from the heater, the auto-
correlation function varies rigorously periodically. As
follows from the space correlation function (Fig. 11),
the temperature fluctuations along the free surface are
periodical in character, the phase shift being less than
the fluctuation period of the heat flux.

The temperature alternates periodically in time at
different distances from the free surface (Figs. 12(a)
and (b)); near the surface an inconsiderable tem-

I
\ t,*3s
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))(( x'Tmm
\ + = Tmn
y=0.lmm
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{
~.
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S % 06 B

x (rmm)
FIG. 6. The maximum (7,,,), mean (7) and minimum (7T,;,)
periodic temperature fluctuations on the free surface vs ‘x’
(to =35).
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F1G. 9. The maximum (1), mean (2) and minimum (3) values
of to/p. (6u/cy), and (€T/6x), on the free surface (¢, = 3 5).

perature gradient is observed (Fig. 13). The mean-
square temperature fluctuations vary at the free sur-
face (Fig. 13).

The autocorrelation functions (Fig. 14) and the
space correlation functions of the temperature fluc-
tuations (Fig. 15) over the boundary layer thickness
are periodic in character and are correlated with
respect to the coordinate y.

The measurements of velocity and temperature pro-
files in the region of the developed flow show that
the value of the temperature gradient along the free
surface is constant (Fig. 6) and, hence, the velocity on
the free surface is also constant (Fig. 16). It should be
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FiG. 10. The autocorrelation functions of temperature fluctuations on the free surface at different distances
from the heater (¢, = 3 5).

noted that, due to the periodic boundary layer flow
near the heat source, the flow develops under con-
ditions differing from those of the steady heat flux
(Fig. 2). At the periodic heat flux, the effective value
of x is greater than that at the steady heat flux equal
to the mean value §. In the region of the developed
flow at x = 150 mm, the horizontally directed heat
flux calculated from the measured velocity and tem-
perature profiles appeared to be 30% lower than
the mean heat flux supplied to the heater, i.c. to be
equal to 17 W m~'. This means that the heat flux
varies with distance from the heater. However, it was
impossible to measure the values of the heat flux in
different vertical sections of the periodic layer.

Periodic flows at t; = 12s
The experimental results obtained for the regime
to=12s, L =105 mm, x, = 370 mm, z, = 150 mm,

x=0 x=4mm

R (AmT)

L

0=2Wm™', T,=21.7°C and f, = 5 Hz are pre-
sented in Figs. 17-26. The periodic temperature fluc-
tuations at the free surface for 1, = 12 s and x < 11
mm (Fig. 17) are more complex in character than
those for t, = 3 s (Fig. 5). The phase shift for the
lifetime of an individual periodic flow is com-
mensurable with the fluctuation period of the heat
flux (Fig. 17). The mean free surface temperature
diminishes with distance from the heater; in the
developed flow region the quantity T changes linearly
with x (Fig. 18).

The autocorrelation functions of temperature fluc-
tuations on the free surface for different values of x
are of periodic character (Fig. 19). It follows from the
space correlation functions (Fig. 20) that the time
shift 7.,,, at which the greatest correlation coefficient
R(An, 1) is observed for An comparable with x,, is
smaller than the fluctuation period of the heat flux;

F1G. 1 1. The space-time correlation functions of temperature fluctuations on the free surface for different
shifts An = x (1, = 3 5).
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t{s)

x=i5mm; ¢, =3s

3
t(s)

FIG. 12. Temperature variations in time for different values of y at ¢, = 3s.(a) x = Smm. (b) x = {5 mm.

the greatest correlation coefficient for the temperature
fluctuations on the free surface varies little with an
increase in the shift An; based on the time shift for
the fixed spatial shift 7,,,, it is possible to assess the
velocity of temperature perturbation on the free sur-
face of the liquid Anfz,,.

The friction coefficients 7, and (6u/dy), due to the
thermocapillary forces are calculated from equation
(27) and from the values of (87/dx), determined for
different values of x (Fig. 21). The friction coefficients
vary periodically with time (Fig. 21) and when
15 < x <40 the flows directed toward the heater
appear on the free surface.

However, the mean values of t, and (fu/dy), vary
monotonously without changing their sign, and the
mean velocity of the free surface is always positive
(Fig. 22).

The temperature fluctuations over the layer thick-
ness were measured for the sections x = 9 mm (Fig.
23(a)) and x = 25 mm (Fig. 23(b)). With the immer-

sion of the thermocouple, the temperature fluc-
tuations become more complex, but are of periodic
character (Fig. 23(a)). The mean values of tem-
perature near the surface vary little, indicating the
possibility for measuring correctly the free surface

(7"?) iz

2
y {mm)

FiG. 13. The mean (7) and mean-square values of tem-
perature fluctuations over the layer depth 'y" (1, = 3's).
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-l

FiG. 14. The autocorrelation functions of temperature fluctuations over the layer depth and x = 5 mm
(to=335s).

temperature (Fig. 24). The mean-square temperature
fluctuations change non-monotonously with increas-
ing y (Fig. 24). The autocorrelation and space cor-
relation functions of the temperature fluctuations vary
strictly periodically with change in the time shift ©
(Figs. 25(a), (b) and 26(a), (b)). The temperature

fluctuations over the boundary layer thickness are
rigidly correlated (Figs. 26(a) and (b)).

The limit of the periodic flow propagation (x,)
The study of the periodic flow structure shows that
the lifetime of an individual periodic flow is com-

RAn;T)

-1

FiG. 15. The space-~time correlation functions of temperature fluctuations over the layer depth (1, = 3 s).
@x=5mm,An=(y—0.16)mm: 1,y =016 mm;2,y=045mm;3,y=08mm;4,y=1.77mm;S5,
y=265mm. (b) x = 15mm, An = (y—0.15) mm: 1,y = 0.15mm; 2, y = 045 mm; 3, y = 3.32 mm.
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FiG. 16. The velocity and temperature protiles far from a periodically varying heat flux at ¢, = 3 s and
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FiG. 17. Variations of the free surface temperature in time for different values of x in the layer L =

mm,x, =370mm, §=22Wm~!, T.=21.7°Cand ¢, = 12s.

mensurable with the period of heat loading variation.
For example, for ¢, =3 s the phase shift of the
maximum temperature at x =25 mm comprises
t4/t, = 0.7 and the temperature fluctuation amplitude
is equal to 0.05T (Fig. 5); for r, =12 s and x =49
mm the phase shift is #,/¢t; = 0.7 and the temperature
fluctuation amplitude is 0.047 (Fig. 17). The same is
indicated by the space correlation functions calculated
from the experimental data (Figs. 11 and 20) : the time
shift 7., corresponding to the maximum value of
R(An, ) (for An comparable with x,) is smaller than
the heat flux fluctuation period (the time shift 7.,
characterizes the magnitude of the phase shift ¢,).
The periodic flow can be assumed to propagate to
such a distance x4 from the heater which is covered
by the liquid at the free surface for the time com-
mensurable with the fluctuation period at the heat flux
commensurable with the mean value of the latter.

12 i8 24
t(s)
105

& —

\ to=12s

e~ T

5\“

X = Tmm

E \X\ + = Tmm

~ 1§ k
L\ \
\‘- X
LA
T \4"\°\)\
NN
\+ =
'\‘
\.
3 1 i L
50 [{s,9] 150
x (mnm)

FiG. 18. The maximum (7,,,,), minimum (Ty,,) and mean
(T) periodic temperature fluctuations on the free surface vs
X’ (ty=12s).
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Rir)

FiG. 19. The autocorrelation functions of temperature fluctuations on the free surface for different values
of x (1, = 12s).

" O ‘\\' %
BV SA

shifts: An=(x—1.5) mm, t,=12s. I, x=1.5mm; 2, x=5mm; 3, x=11 mm; 4, x=21.7 mm; 5,
x=30.6mm; 6, x=39.8mm; 7, x = 59.2 mm.
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FiG. 21. The longitudinal temperature gradient (37/éx),. the velocity gradient (0u/dy), and the friction
To/p on the free surface for different values of x (t, = 12's).
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FIG. 22. The maximum (!), mean (2) and minimum 3)
values of ty/p, (Pu/dy), and (8T/x), on the free surface
(o = 12'9).

In the region of the existence of periodic flow, there
exist the greatest temperature gradients along the sur-
face (Figs. 6 and 18) and thermocapillary forces which
are much in excess of thermogravitational forces.
Therefore, it is possible to set g = 0 in equation (1).

A. G. KIRDYASHKIN et al.

Assuming for y — x

¢T)ey =0, T(x)=const, u=v=0 (28)

as the boundary conditions on the outer part of
the boundary layer (Q = const.), equations (1)-(3) at
g =0 and boundary conditions (4) and (28) can be
presented in the form of the differential equations

46" + 9" +2¢'* =0
4Pr=' 4 (8) = 0 } %)
where
G g0 W)
¢_6r7’ 9—54’ u—'Ey’ ST
= (bQvx/c,p*)" o (n),
w "? ;f) / ¢ '1’4( (30)
3= (Olpe,) *(pibv)' *80y), [
n=(/vx)**Q/pc,)"?,
u=(bQ/c,vxp?)" u(n). J

0 3 12 8 24
t (s)
(b)
6 —
{
=
< 2
B~
N O\
qa
M
S
M
3M
/__/\/____/8\/
i — S~
25 3 2 8 24

t(s)

FiG. 23. Temperature variations in time for different values of y at 1, =12s. (a) I, y =0, x = 1.5 mm,

x=9mm;2,y=02mm;3,y=036mm;4,y=117mm; 35, y=17mm;6.y =258 mm; 7, y = 3.46

mm; 8, y=45mm. (b) I,y =0, x=15mm x=25mm; 2, y=014mm; 3, y=07mm; 4, y=17
mm; 5, y=277mm;6,y =426 mm. 7,y =6.08 mm;8, y = 8.56 mm.
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FIG. 24. The mean values T and mean-square temperature fluctuations over the layer depth (¢, = 12s).

Physically, boundary conditions (28) cannot be
realized for the outer part of the boundary layer in a
steady flow, as testified by the experimental inves-
tigations described above. Mathematically, it is
necessary to prove whether or not the solution to

{a)

equation (29) exists under boundary conditions (4)
and (28).

Boundary conditions (28) for y > d(y — ) havea
common feature with actual conditions (6), lying on
the fact that in actual conditions the heat flux is also

RiT)

Fi1G. 25. The autocorrelation functions of temperature fluctuations over the layer depth (1, = 12 s). (a)
x =9 mm. (b) x =25 mm.
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ence on51sts of the fact that at the edge of the bound-
ary layer in the boundary-value problem considered
= v, = const., T varies by law (6) and, therefore, the
self-similar solution (30) does not exist for the ‘outer
part’ of the boundary layer.
It is assumed that the velocity of the periodic flow
propagation is comparable with that of the liquid

ion on the o const
motion on the free surface at g = comnst.
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Fi1G. 27. The amplitude (AT7,.) of periodic temperature
fluctuations on the free surface +s "x’".
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F1G. 28. The mean-square temperature on the free surface vs ‘x”.

Figures 27 and 28 give the amplitudes of the periodic
disturbances and mean-square temperature fluctu-
ations along the free surface for different values of
to. The damping length for the periodic disturbances
X, is determined from Figs. 27 and 28 from the inter-
section of the averaging curves with the x-axis.

As in the case of the propagation of periodic flows
in a plane layer [1], relation (33) is confirmed within
experimental accuracy for ¢, = 3-24 s

xo(pc,[b01) " = LS.

For a larger volume, the value of the above criterion
(34) is somewhat lower than for the plane layer.
This can be attributed to the high velocity of the
averaged free surface flow in the plane layer [1].

The distribution of periodic flows at the free surface
of ethyl alcohol is mainly determined by thermo-
capillary forces. Due to a large inertia for frequencies
higher than 1/24 Hz, the thermal gravitational flows

(34)

do not exert an appreciable effect on the damping
length of periodic flows (x,). On the other hand, the
steady flows are governed by the interaction between
the thermocapillary and thermogravitational forces.
It should be expected that far from the heater, at
large values of x, the thermogravitational forces will
become predominant with a decrease in the gradient
10T /0x|,.
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ECOULEMENTS THERMOCAPILLAIRES PERMANENTS ET PERIODIQUES DANS
UNE COUCHE HORIZONTALE BEAUCOUP PLUS EPAISSE QUE LA COUCHE
LIMITE A LA SURFACE LIBRE

Résumé—On présente les résultats d’une étude expérimentale sur les écoulements thermocapillaires et
thermogravitationnels dans une couche horizontale beaucoup plus épaisse que la couche limite hydro-
dynamique 4 la surface libre. Il y a une source de chaleur linéique sous la surface libre et un puits thermique
sur les faces verticales opposées. Pour un flux thermique constant, des couches limites se développent sur
la surface libre horizontale et sur les faces verticales froides. On présente des profils de vitesse et de
température mesurés dans les couches limites. Des solutions analytiques sont obtenues. Les configurations
des écoulements périodiques thermocapillaires étudiées pour des périodes inférieures a 24 s concernent ; les
températures instantanées et moyennes, les valeurs moyennes et instantanées du coefficient de frottement
4 la surface libre, la variance des fluctuations de température, les fonctions de corrélation espace-temps et
les limites de la propagation des écoulements périodiques.
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STETIGE UND PERIODISCHE THERMOKAPILLARE STROMUNGEN IN EINER
HORIZONTALEN FLUIDSCHICHT, DEREN DICKE SEHR VIEL GROSSER ALS
DIE GRENZSCHICHT AN DER FREIEN OBERFLACHE IST

Zusammenfassung—In dieser Arbeit werden die Ergebnisse einer experimentellen Untersuchung von thermo-
kapillaren und auftriebsbedingten Stromungen in einer horizontalen Fluidschicht vorgestelit, deren Dicke
sehr viel groBer als die der hydrodynamischen Grenzschicht an der freien Oberfliche ist. Unterhalb
der freien Oberfliche befindet sich eine lineare Wirmequelle, an der gegeniiberliegenden senkrechten
Wand eine Warmesenke. Bei konstanter Wirmestromdichte bilden sich Grenzschichten entlang der hori-
zontalen freien Oberfliche und der senkrechten Kihifliche aus. Die in den Grenzschichten gemessenen
Geschwindigkeits- und Temperaturprofile werden dargestellt. Die Grenzschicht an der Kiihlfliche sowie
der Bereich auBerhalb der Grenzschicht wird analytisch berechnet. Die Form der periodischen thermokapil-
laren Strémungen mit einer Periodendauer kleiner als 24 s wird untersucht. Dabei werden folgende
GroBen bestimmt: die momentanen und die zeitlich gemittelten Temperaturen, die momentanen und die
zeitlich gemittelten Werte des Reibungskoeffizienten an der freien Oberfliche, die Varianz der Temperatur-
schwankungen, die zeitlich-riumlichen Korrelationsfunktionen und die Grenzen der Ausbreitung der
periodischen Stromungen.

TEPMOKAIJUIAPHBIE CTAHUOHAPHBIE U NEPUOJNUYECKHUE TEYEHHUA B
I'OPHU30OHTAJIBHOM CJIOE, MHOI'O BOJIBIIEM TOJIMIMHbBI MOTPAHUYHOI'O CJ10A
Y CBOBOJIHOH MOBEPXHOCTH

AnsioTauNs—B CTaTbe H3NAraloTCA pe3yinLTaThl SKCIHCPHMEHTAILHBIX MCCIACAOBAHHA TepMOKAaNWLIAD-
HBIX H TEPMOIPABHTALIHOHHBIX TEYEHUil B TOPHIOHTANBHOM C/10€, MHOrO GOJbIIEM TOMUIMHBLI THAPOIH-
HAMHYECKOTO NOTPAHUYHOrO CJIOA Y cBO0OAHOH MOBePXHOCTH. JIHHEHHBIA HCTOMHHEK TeIL1a PacnoNOXKeH
non cBoGOAHON MOBEPXHOCTBIO, OXNAXIACHHE—Y BEPTHKAJIBLHOTO NPOTHBONOJOKHOrO Topua. fpu noc-
TOAHHOM TEILIOBOM NMOTOKE OPraHH3YIOTCH MOTrPaHHYHBIE CJIOH Y CBOBOAHOM rOPHIOHTANILHOM H OXJ1aX-
paioweil BepTHKaTbHON MosepxHOCTH. TlpeacTaBiieHbl HIMepeHUs MpoduIIell CKOPOCTH K TeMIEPaTypPh
B NOrpaHuIHBIX cnosx. [oyyeHsl aHAATHYCCKAE PEIeKHA UIS TOrPARKMYHOTO CNIOA Y oxjaxaaouedt
NOBEPXHOCTH H BHE NOrpaHHIHbIX cioeB. MccnenyeTcs CTpYKTypa NEPHOAHYECKHX TEPMOKANMMIUIAPHBIX
TEYEHHH MPH NEPHOAAX, MEHBUIHX 24 C: AKTYAJILHBIC H CPE/IHHE 3HAYEHHS TEMNEPATYPHI, AKTYAIbHBIC K
cpefinHe 3HavueHus Ko3(pdHUMEHTa TPeHUS y CBOGOMHON MOBEPXHOCTH, AUCNIEPCHA NMY/ILCALMH Temnepa-
TYpBI, POCTPAHOCTBEHHO-BPEMEHHbIE KOPPEJIRIHOHHbIE (QYHKIMH, IPaHAHbI PACTIPOCTPAHEHUS MeEPHO-
IAYECKHX TeYEHHH.



