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Abstract-This paper presents the results of an experimental investigation of thermocapillary and thermo- 
gravitational flows in a horizontal layer much thicker than the hydrodynamic boundary layer at the 
free surface. There is a linear heat source beneath the free surface and a heat sink at the opposite vertical 
face. At a constant heat flux, boundary layers develop at the free horizontal and the cooling vertical 
surfaces. Velocity and temperature profiles measured in the boundary layers are presented. Analytical 
solutions are obtained for the boundary layer at the cooling surface and beyond the boundary layers. The 
patterns of periodic thermocapillary flows for periods shorter than 24 s are studied : the actual and mean 
temperatures, the actual and mean values of the friction coefficient at the free surface, the variance of 
temperature fluctuations, space-time correlation functions, and the boundaries of the propagation of 

periodic flows. 

INTRODUCTION 

THERMOCAPILLARY and thermogravitational flOWS 
originate in a horizontal layer at any horizontal tem- 
perature gradient, however low it may be. The 
relationship between thermocapillary and thermo- 
gravitational forces in a plane-parallel flow (the mode 
of heat conduction [l]) can be characterized by the 
complex k = MalRa = b//?pg12. With an increase in 
the layer thickness the effect of the thermocapillary 
forces on the total flow in the layer decreases. 

In different modes of flow, when, for instance, 
boundary layers get organized, the interaction 
between these forces is more complex and shows up 
near the free surface of the liquid. 

The interaction between thermocapillary and 
thermogravitational forces can be expected to be still 
more complex in unsteady-state modes of flow. The 
surface thermocapillary forces caused by the 
reduction of the surface tension with increasing tem- 
perature have the nature of molecular interactions 
and are less persistent as compared with mass thermal 
gravitational forces. 

Kirdyashkin [l] presented an experimental inves- 
tigation of the pattern of periodic thermocapillary 
flows originating due to periodic variations in the heat 
loading on the linear source at the free surface of 
the liquid. The periodic flows develop in the plane 
horizontal layer with adiabatic horizontal surfaces. 
Instantaneous and mean temperature gradients along 
the free surface and, hence, the friction on the surface, 
were measured. The boundaries of the propagation of 
periodic perturbations depending on the amplitude 
and period of the loading variations were found. It is 
shown that with t0 < 35 s the thermogravitational 

forces do not have any appreciable effect on the per- 
iodic tlow propagation along the surface. The survey 
of studies of horizontal flows in a horizontal tem- 
perature gradient is given in refs. [ 1,2]. 

In the present paper the results of considering 
experimentally thermocapillary and thermogravi- 
tational flows in a horizontal liquid layer are given 
for the following conditions. 

(1) A thermal and hydrodynamic structure in the 
layer which is much thicker than the hydrodynamic 
boundary layer at the surface at a steady heat flux 
(the heat source is located at the surface; the cooling 
occurs near the opposite vertical face). 

(2) The structure of the periodic thermocapillary 
flows when t,, < 24 s ; the actual and averaged tem- 
perature fields ; the actual and averaged velocity gradi- 
ents at the surface and, consequently, the friction 
coefficients; the second order moments (temperature 
variance, space-time correlation functions) ; the 
boundaries of propagation of periodic flows. 

The study of the structure of thermocapillary per- 
iodic flows is of interest in connection with the pros- 
pect of obtaining high-quality materials and single 
crystals. 

EXPERIMENTAL FACILITY AND MEASURING 

TECHNIQUES 

The thermocapillary periodic flows were inves- 
tigated in a volume of 96% ethyl alcohol of length 
x, =370mm,heightL= lOSmmandwidth=, = 150 
mm with a free adiabatic surface of the liquid. The set- 
up arrangement and the boundary conditions effected 
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NOMENCLATURE 

; 
thermal diffusivity 
temperature coefficient of surface tension 

CP heat capacity at constant pressure 

9 gravitational acceleration 
L height of a layer 
Ma Marangoni number 

& mean value of heat flux for the period 
R(An, r) space-time correlation function 
R(T) autocorrelation function 
Ra Rayleigh number 
t time 

t0 period of heat flux fluctuation 
T temperature 

T, temperature of vertical cooling surface 

T” temperature in layer core 

To temperature of free surface 
u horizontal velocity component 

c vertical velocity component 
x0 distance of propagation of periodic flows 
Y, x, = vertical and horizontal coordinates. 

Greek symbols 

B coefficient of thermal expansion of liquid 
p, v dynamic and kinematic viscosities 

P density 
d coefficient of surface tension 
r time shift 

ro coefficient of friction at the free surface. 

Subscripts and superscript 
max maximum 

;r 
parameter of layer core 
free surface of liquid 

_ 
mean value. 

in the experiment are given in Fig. I. The experimental 
set-up, the construction of which is presented in detail 
in ref. [ 11, was made of o’ptically transparent organic 
glass. 

As a periodic heat source, use was made of a ni- 
chrome filament, 0.15 mm in diameter and 145 mm 
in length, stretched between two rigid holders. The 
nichrome filament was arranged horizontally at a dis- 
tance of 5 mm from the vertical thermally insulated 
face and at a distance of 0.2-0.3 mm from the free 
surface. 

The control system for a periodically alternating 
heat flux is given in ref. [l]. The heat source power 
can be regulated by the law 

Q=Q,+Q,(l+sinF), 

where 0.2 s < f. < 100 s. 

The amplitude of the heat flux power was regulated 
within the range O-45 W. 

The constancy of the cooling vertical brass surface 
temperature T, was ensured by pumping thermo- 
statically regulated water through the inner cavity of 
the heat exchanger, the time averaged temperature 
of which was maintained within &O.Oj’C. 

The temperature of the liquid in the boundary layer 
at the vertical cooling heat transfer surface was mea- 
sured with a nichrome-constantan microthermo- 
couple made of 0.05 mm diameter wires. The working 
portion of the needle-type thermocouple extended 
10 mm from the glass holder and was set parallel 
to the surface. The other junction of the thermo- 
couple was maintained at the ice melting temperature. 
With the aid of a macroscrew, the thermocouple 
was traversed horizontally and vertically. Its ver- 
tical position was determined accurate to 0.01 mm 

I i 

FIG. 1. Flow pattern and boundary conditions in studying periodic flolvs. 
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by using a V-630 cathetometer. The thermocouple 
traversed along the coordinate ‘x’ normal to the 
cooling wall and was lixed by a clock-type indicator 
with 2 pm division. The initial position of the thermo- 
couple junction (a contact with the wall) was indicated 
by the V-630 cathetometer and thereupon was refined 
when constructing the temperature distribution across 
the boundary layer: the point was determined at 
which the linear temperature distribution in the wall 
boundary layer intersected with the constant tem- 
perature line, which corresponded to the local wall 
temperature. 

The temperature gradient on the free surface of the 
liquid was measured using a differential micro- 
thermocouple and fixed in the form of an analogous 
signal. Its value was found from the formula 

dT/ax = UJKRAx 

where CJ, is the amplified part of the differential 
thermocouple e.m.f., K the amplification factor of the 
system based on the loaded resistance. equivalent to 
that of the thermocouple, R the thermocouple sen- 
sitivity (pV ‘C-‘), and x the spacing between the 
junctions of the differential thermocouple. 

The constructions of probes and the techniques of 
measuring temperature and velocity in the ethyl alco- 
hol layer were similar to those employed in ref. [l]. 
The only differences were in the methods of fixing 
instantaneous e.m.f.s of the microthermocouple, 
which were measured with the aid of a digital volt- 
meter (with a sensitivity of 1 pV), which was also an 
analogue-to-digital converter. After passing the 
matching device of the KAMAK system, the volt- 
meter signals were put into storage and pressed by 
the dialogue computing complex DVK-2M. 

Instantaneous local temperature drops in the layer 
relative to the temperature of the thermostatically 
regulated water, which cooled the heat exchanger, 
were found from the formula T(t) = UJR, where iJ, 
is the measured e.m.f. of the thermocouple. Discrete 
realizations of instantaneous temperature drops 
T(t) were recorded at the time instants ti = ih 
(i = 1,2,. . . , N), where h = 1lf, is the discretization 
step and fb is the discretization frequency. The fre- 
quency of selection of the thermocouple e.m.f.s and 
the file of numerical data N = 1024 were specified by 
the programme. The following random statistic 
characteristics of the discretized realizations of 
instantaneous local temperature drops were cal- 
culated: the mean values T= Xi”, , TJN; instan- 
taneous temperature fluctuations r(t) = T(r) - T’; 
the qth central moment m, = py= , (z-_]q/N, 
q = 2, 3, 4; the variance m2 = F; the auto- 
correlation function R(r) = T’(t) * T’(t+s)/R(O) ; 
the space correlation function R(An;t) = T’,(r) 
* T;(r+r)/[R,(O)- R2(0)]“’ where T is the time shift; 
T,(r) and T;(t) the temperature values on the first 
and second probes, An the spacing between the 
probes along the x- or y-axis ; the microscale of the 

time TV determined from the equation of the para- 
bola which approximates R(7) in the vicinity of 7 = 0, 
R(7) = l-7*/7:. 

RESULTS OF MEASUREMENTS AND THEIR 

ANALYSIS 

Constant heatflux 
At a constant heat flux from a cylindrical heater (a 

filament) and under the boundary conditions in the 
liquid layer indicated in Fig. 1, there exist two bound- 
ary layers : at the horizontal free and cooling vertical 
surfaces. The horizontal temperature gradient gives 
rise to the thermocapillary forces 

da aT 

7Q=dT x0 0 

on the free surface. For ethyl alcohol du/dT = b = 
9x10-sNm-‘degg’. 

The boundary layer flow at the free surface results 
from the interaction of thermocapillary and thermo- 
gravitational forces. 

Under the conditions of thermal and thermo- 
capillary convection, the equations for the boundary 
layer at the horizontal surface have the form 

a52 abv aT a5 
-+t=/Q,+v7 axay ay ay (1) 

duT dvT d=T 
dr+ay=aay2 I (2) 

!!!+do=O. 
ax ay (3) 

The boundary conditions on the free surface (y = 0) 
are 

(.),=;$)O; v=o; g=o (4) 

at x = x, and T = T,. The conditions at the edge 
of the boundary layer can be elucidated if the laws 
governing temperature variations in the layer core are 
known. The layer core is understood to be the area 
beyond the boundary layers. 

In the layer core, any horizontal gradient, however 
small, may give rise to horizontal flows which equi- 
librate the temperature along the x-axis. For these 
large-scale motions the viscosity forces are vanishingly 
small. 

For the layer core under steady-state conditions, it 
is possible to assume in the first approximation that 
the temperature in the horizontal section is constant, 
i.e. the horizontal flow velocity is negligible [2]. 

Within the scope of this assumption, the tem- 
perature field T,(y) is formed in the layer core. 

Heat removal is affected by the vertical cooling 
surface, at which a free-convective boundary layer is 
formed, with the flow in it being directed downward. 
An oppositely directed fiow (0.) should exist in the 
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core of the layer. It can be assumed that in the layer 
core c’, = const., since t’,(y) horizontal flows can occur 
which, in the presence of the cooling vertical surface, 
can give rise to a horizontal temperature gradient in 
the layer core. Thus, the assumption that T&) yields 

0” = const. in the layer core is valid. 
The layer core is described by the equation : 

Under the boundary conditions: y = 0, T = T,; 
y = cc, T = 0 the solution of equation (5) has the 
form 

T,, = Tm e”*J”” (6) 

where L’, < 0. 
The temperature distribution occurring in the layer 

core and corresponding to equation (6) is presented 
in Figs. 2 and 3. This correspondence indicates that 
v, = const. in the layer core. 

Thus, in the outer part of the thermal boundary 
layer at the free surface, the temperature varies by Iaw 
(6) and the heat flux at the edge of the boundary layer 
is equal to zero ; the normal velocity component is 

0, = const. and the longitudinal component is u = 0. 
Near the heater the temperature gradient along the 
surface can attain large absolute values, and the 
thermocapillary forces are much larger than the 
thermogravitational forces: as 12T/t3.xln decreases 
away from the heater, the the~ogravitationai forces 
become predominant. 

Consideration will be given to the free-convective 
boundary layer at the cooling vertical plate located in 
the vertical section .r = x,. The origin of the coor- 

(a) 

dinates will be taken as follows : the y-axis is oriented 
vertically downward from the free surface and the X- 
axis-normally to the vertical surface. 

The solution of the thermal boundary layer on the 
cooling vertica1 surface is presented in the form [3] : 

T = T,(.Y)+@(.v;_Y). Vf 

Then the boundary layer equation has the form 

dT, d0 80 80 
vav +vz +u-- = a-7 

d.K dx- 

In the case considered, c@ < VT, and the second term 
of equation (8) can be neglected. Taking into account 
that u << v, the term u(H,Gx) can also be neglected. 
Equation (8) will then take on the form 

Since the inertia terms can be disregarded owing to 
their smallness, the equation of the dynamic boundary 
layer at the vertical wail can be written under the 
Boussinesq approximation as 

The boundary conditions for equations (9) and (10) 
are 

x= co: L’ = 0, 0 = 0. (11) 

The magnitude of the velocity c, is obtained from the 

u (mm s-'l 

FIG. 2. (a) Profiles of the longitudinal vebcity component (uf at the free surface of ethyl alcohol. (bt 
Temperature profiles over the layer height L = 105 mm, x, = 370 mm and zI = 150 mm at Q = 17 W m- 
and at different distances from the heater : 1. x = 28 mm ; 2, x = 60 mm ; 3. x = 100 mm ; 4, .Y = 170 mm ; 

5,x=240mm;6,.~=280mm. 
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FIG. 3. (a) Temperature pro&es over the layer height L = 105 mm, x, = 370 mm for Q = 17 W m- ’ and 
different values of x: 1, x = 28 mm ; 2, x = 60 mm ; 3, x = 100mm;4,x=170mm;5,x=24Omm.I,By 
equation (23). (b) The temperature gradient d0/Zx at the cooling surface vs the y-axis. II, By equation 

(24). (c) Temperature variations of the cooling surface over the height (y). III, By equation (25). 

equation 

1 6 
r* = - 

s Xl 0 
V(X) dx. (12) 

Since 6 c.. xi, then t‘ >> v, and for x >> S it is possible 

to assume that c = 0. 
Equation (10) is differentiated twice with respect to 

‘x’ and substituted into equation (9) 

(13) 

Let 

(14) 

Since ZT,/ay < 0. then 4m4 > 0. The general form 
of the solution for the equation (D4+4m4)o = 0 at 
v(O) = 0 and v(a) = 0 is 

D = c*sinmx*e-““. (15) 

Under the boundary conditions (11) and e(O) = #r, 
the solutions of equations (9), (10) and (12) are 

BSSI - 
u= -gp W sin mx 

l3 = 8, eem cos mx (17) 

&@I un 4vam3x, 
V”=s; 8-r. (18) 

Under the boundary conditions (11) and S/C?X = 8; 

at x = 0, the solution of the system of equations (9), 
(10) and (13) will yield 

c = Pss; emnu sin mx 

2vm 
(19) 

ff 
0; - = --_e nrx cos mx 
m 

(20) 

k@l u,,x, dT, 
-_ u=--, &= a ay. n (21) 

As follows from equations (15), (18) and (21), the 
condition u,, = const. will be fulfilled when 

. 

and 0; -$. (22) 

The validity of the adopted approximations, namely 
the uniformity of temperature of the horizontal plate 
for the layer core, the constancy of the velocity v, in 
the layer core and the correctness of approximations 
in solving the equations of the boundary layer at the 
cooling surface, is assessed experimentally. 

Experimental investigations were conducted in the 
ethyl alcohol layer of height L = 105 mm, length 
x, = 370 mm and width zI = 150 mm at a steady heat 
Aux on the filament Q = 22 W m- ‘. The results of the 
measurements are given in Figs. 2-4. Near the free 
surface, there exists a laminar boundary layer with 
the thickness much smaller than that of the liquid 
layer. Under the conditions of steady stratification, 
there originate oppositely directed flows. The change 
of temperature along the surface gives rise to the 
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thermocapillary forces on the free surface (Fig. 2). 
The thermal boundary layer is also considerably thin- 
ner than the liquid layer; the temperature in the layer 
core varies only along the coordinate ‘J’ and stable 
stratification over the height of the entire liquid layer 
is observed (Fig. 2). Near the cooling vertical surface, 
a free-convective boundary layer develops (Fig. 4). 

In solutions (16)-(21) the unknown parameter is 
the velocity ~1,. The determination of L:, involves the 
closure of the solutions for the boundary layer at the 
horizontal free surface and for the boundary layer at 
the vertical cooling surface, the solution for the 
boundary layer at the free surface not being obtained. 
Therefore, the velocity v,, will be found from the exper- 
imental temperature distribution over the layer height 
(Fig. 2 (b)). 

According to the experiments (Figs. 2(b) and 3(a)), 
the temperature distribution over the layer height can 
be approximated by exponential relation (6) 

r, = 3.8 e-5”.2‘+. (23) 

It follows from equations (6) and (23) that 
v,/a = -55.24 m- ’ and, consequently, 11, = 
-4.955 x 10e6 m s- ’ at T = 25’C. The ratio v,/a being 
known, the laws governing the cooling surface tem- 
perature variations 0, and the temperature gradient 
O’, at this surface can be obtained from equations 
(18) and (21). 

Figure 3(b) presents comparison of the values of 
the temperature gradient at the cooling surface cal- 
culated by equation (21) 

O’, = 4290e-55 Z1J (‘Cm-‘) (24) 

with those determined experimentally. A satisfactory 
agreement of the predicted and experimental data is 
observed. 

The experimental values of the cooling surface tem- 

FIG. 4. The profiles of the velocity c in the boundary layer 
at the cooling surface at different values of )’ by equation 
(16)or(19): l,y=2.58mm;2.y= 14.24mm;3,y=33.8 
mm; 4, _v = 54.4 mm. Temperature profiles by equation (17) 
or (20) : 5, y = 2.58 mm ; 6, y = 14.24 mm ; 7, ): = 33.8 mm ; 

8, J = 54.4 mm. 9. experimental values of temperature. 

perature correspond to the distribution of 0, predicted 
by equation (18) in terms of the known quantity c,/a 

6, = 2.96 em”-“’ (~C) (25) 

as follows from Fig. 3(c). The comparisons given 
indicate the validity of relations (22). 

Figure 4 presents a comparison of the experimental 
temperature profiles and those determined theo- 
retically following solution (17) or (20) at the known 
value of v,/a. A good agreement of theory and exper- 
iment is observed (Fig. 4). The figure also gives theor- 
etical velocity profiles at the cooling surface predicted 
by equations (16) and (19). 

Thus, the assumptions on the hydrodynamics and 
heat transfer in the layer core and the cooling surface 
adopted in solving the problem are quite permissible 
and allow an analytical estimate of the behaviour of 
thermal gravitational flows in these regions. 

From the temperature and velocity profiles mea- 
sured experimentally over the layer height, it is poss- 
ible to determine the heat flux directed horizontally 

5 
Q = cPp uTd_r. 

s 0 

According to the measured velocity and temperature 
profiles at x = 170 mm, Q = 17 W m- ‘. which is 30% 
smaller than the heat flux of 22 W m- ’ supplied to 
the filament. 

The difference between the heat fluxes is associated 
with heat losses through the lateral faces and through 
the upper air layer. These losses (30%) could not be 
avoided. The greatest heat losses are to be expected 
in the vicinity of the heater, where the temperature 
gradients are maximal. The same heat losses were also 
observed at the heat flux alternating periodically on 
the horizontal filament. 

Periodicflows at tO = 3 s 

The structure of periodic flows was considered in 
the absence of the constant component of the heat 

flux Q, 

Q=e( j l+sinF 

and when 3 s ,< t, < 24 s. The working volume was 
filled with 96% ethyl alcohol and the heater, i.e. a 
nichrome wire, was immersed to a depth of 0.2-0.3 
mm from the free surface. When the filament is located 
near the surface and Q is maximum, the liquid near 
the heater becomes superheated and evaporates. The 
measurements were performed over a period of 3.5 h 
after the periodic heat flux had been supplied. 

The experimental results obtained for t, = 3 s, 
L = 105 mm, _r, = 370 mm, : = 150 mm. Q = 22 W 
m -I > K = 21.7”C and fb = IO Hz are given in Figs. 
5-16. The free surface temperature was measured by 
two thermocouples, one of them fixed and the other 
moving along the x-axis, while remaining in the same 
plane z = const. The cold junctions of the thermo- 
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FIG. 5. Variations of the free surface temperature in time for different distances (x) from the heater in the 
layer L = 105 mm, x, = 370 mm, 0 = 22 W m- ‘, T, = 21.7”C, l,, = 3 S. 

couple had the temperature of the thermostatically 
regulated cooling water, which circulated in the cavity 
of the vertical heat exchanger. In such a manner 
instantaneous temperature drops in the layer were 
measured with respect to the temperature in the vicin- 
ity of y = L and, consequently, with respect to the 
cooling surface of the copper vertical heat exchanger 
at y values greater than the boundary layer thickness 
at the free surface near the cooler. 

Figure 5 presents instantaneous values of the free 
surface temperature at different distances from the 
periodic heat flux source and the phase shift at differ- 
ent values of ‘x’. The temperature varies in time 
periodically at different x values, decreasing in ampli- 
tude during removal from the heater. The amplitude 
and the mean temperature for different values of ‘x’ 
are given in Fig. 6. From the plots of Figs. 5 and 6, 
instantaneous temperature values can be found for 
different values of t/to and x. 

Figure 7 illustrates phase shift-induced variations 
in the maximum temperature tg/to at different values 
of x and the phase rate of the maximum temperature 
u+. The resolving power of temperature measurements 
made it possible to trace the phase shift up to x = 25 
mm, in this case t,/t,, = 0.7, and the amplitude of 
temperature fluctuations amounted to 0.05 T. 

When 5 mm < x c 25 mm, the mean temperature 
gradient along the surface in the periodic flow region 
is small in magnitude and varies monotonously 
@T/(3x < 0). 

Measurements were taken directly of the instan- 
taneous values of the temperature gradient (a7’/ax), 
on the free surface and the mean values (E/%r) ,, were 
determined. 

The friction coefficients due to the thermocapillary 
forces and velocity gradients norma! to the surface 
were respectively obtained from the relations 

Their values on the free surface vary periodically in 
time at different distances from the heater (Fig. 8). 
When x c 22 mm, the change takes place in the sign 
of the quantity (Ajax), for the period of fluctuation 
and, consequently, in the direction of the thermo- 
capillary force vector. The mean value of the friction 
coefficient is always r’,, < 0 (Fig. 9). 

Figure 10 presents the autocorrelation functions 
of temperature fluctuations on the free surface. At 
different distances from the heater, the auto- 
correlation function varies rigorously periodically. As 
follows from the space correlation function (Fig. 1 l), 
the temperature fluctuations along the free surface are 
periodical in character, the phase shift being less than 
the fluctuation period of the heat flux. 

The temperature alternates periodically in time at 
different distances from the free surface (Figs. 12(a) 
and (b)) ; near the surface an inconsiderable tem- 

t.*3s 

0-T 
* -T,.a 
+ - Tmm 
y.o.1 mm 

I 
30 

I I 
50 loo I50 

x lmnl 

FIG. 6. The maximum (T,&, mean (n and minimum (T& 
periodic temperature fluctuations on the free surface vs ‘x’ 

(to = 3 s). 
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FIG. 7. The phase shift and phase velocity of the maximum temperature on the free surface vs ‘s‘ (to = 
3 s). 
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FIG. 8. The longitudinal temperature gradient @T/&GJ,, the velocity gradient (&‘c?J), and the friction 
r,/p on the free surface for different values of x (r,, = 3 s). 

FIG. 9. The maximum (I), mean (2) and minimum (3) values 
of r,,'p. (&&Q, and (dT/dx), on the free surface (tO = 3 s). 

perature gradient is observed (Fig. 13). The mean- 
square temperature fluctuations vary at the free sur- 
face (Fig. 13). 

The autocorre!ation functions (Fig. 14) and the 
space correlation functions of the temperature fluc- 
tuations (Fig. 1.5) over the boundary layer thickness 
are periodic in character and are correlated with 
respect to the coordinate J‘. 

The measurements of velocity and temperature pro- 
files in the region of the developed flow show that 
the value of the temperature gradient along the free 
surface is constant (Fig. 6) and, hence, the velocity on 
the free surface is also constant (Fig. 16). It should be 
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FIG. 10. The autocorrelation functions of temperature fluctuations on the free surface at different distances 
from the heater (lo = 3 s). 

noted that, due to the periodic boundary layer flow 
near the heat source, the flow develops under con- 
ditions differing from those of the steady heat flux 
(Fig. 2). At the periodic heat flux, the effective value 
of x is greater than that at the steady heat flux equal 
to the mean value 0. In the region of the developed 
flow at x = 150 mm, the horizontally directed heat 
flux calculated from the measured velocity and tem- 
perature profiles appeared to be 30% lower than 
the mean heat flux supplied to the heater, i.e. to be 
equal to 17 W m- ‘. This means that the heat flux 
varies with distance from the heater. However, it was 
impossible to measure the values of the heat flux in 
different vertical sections of the periodic layer. 

Periodicflows at t,, = 12 s 
The experimental results obtained for the regime 

t0=12s,L=105mm,x,=370mm,2,=150mm, 

Q=22Wm-‘, r, = 21.7’C and fb = 5 Hz are pre- 
sented in Figs. 17-26. The periodic temperature fluc- 
tuations at the free surface for t, = 12 s and x < 11 
mm (Fig. 17) are more complex in character than 
those for to = 3 s (Fig. 5). The phase shift for the 
lifetime of an individual periodic flow is com- 
mensurable with the fluctuation period of the heat 
flux (Fig. 17). The mean free surface temperature 
diminishes with distance from the heater; in the 
developed flow region the quantity Tchanges linearly 
with x (Fig. 18). 

The autocorrelation functions of temperature fluc- 
tuations on the free surface for different values of x 
are of periodic character (Fig. 19). It follows from the 
space correlation functions (Fig. 20) that the time 
shift T,,,~. at which the greatest correlation coefficient 
R(An, T) is observed for An comparable with x,,, is 
smaller than the fluctuation period of the heat flux ; 

x=0 x=4mm 

FIG. 11. The space-time correlation functions of temperature fluctuations on the free surface for different 
shifts A~I = x (I,, = 3 s). 
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(a) 

(b) 

FIG. 12. Temperature variations in time for different values ofy at I, = 3 s. (a) x = 5 mm. (b) .Y = 15 mm. 

the greatest correlation coefficient for the temperature 
fluctuations on the free surface varies little with an 

increase in the shift An ; based on the time shift for 
the fixed spatial shift rmar, it is possible to assess the 
velocity of temperature perturbation on the free sur- 
face of the liquid An/7_. 

The friction coefficients T,, and (du/dy), due to the 
thermocapillary forces are calculated from equation 
(27) and from the values of (~T/%x), determined for 
different values of x (Fig. 21). The friction coefficients 
vary periodically with time (Fig. 21) and when 
15 < .r c 40 the flows directed toward the heater 
appear on the free surface. 

However, the mean values of T,, and (&$a~), vary 
monotonously without changing their sign, and the 
mean velocity of the free surface is always positive 
(Fig. 22). 

The temperature fluctuations over the layer thick- 
ness were measured for the sections x = 9 mm (Fig. 
23(a)) and x = 25 mm (Fig. 23(b)). With the immer- 

sion of the thermocouple, the temperature fluc- 
tuations become more complex, but are of periodic 
character (Fig. 23(a)). The mean values of tem- 
perature near the surface vary little, indicating the 
possibility for measuring correctly the free surface 

o-x*5mm 
l -x*l5mn _ 4 

? 

Ii 

+-x-5mn -2 

y lmrn) 

FIG. 13. The mean (t) and mean-square values of tem- 
perature fluctuations over the layer depth ‘.v’ (1” = 3 s). 
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FIG. 14. The autocorrelation functions of temperature fluctuations over the layer depth and .X=5 mm 

I 

I 

I 

I 

a’ 
‘i: 

(lo = 3 s). 

temperature (Fig. 24). The mean-square temperature fluctuations over the boundary layer 
fluctuations change non-monotonously with increas- rigidly correlated (Figs. 26(a) and (b)). 
ing y (Fig. 24). The autocorrelation and space cor- 

thickness are 

relation functions of the temperature fluctuations vary The limit of the periodic/low propagation (x0) 
strictly periodically with change in the time shift T The study of the periodic flow structure shows that 
(Figs. 25(a), (b) and 26(a), (b)). The temperature the lifetime of an individual periodic flow is com- 

FIG. IS. The space-time correlation functions of temperature fluctuations over the layer depth (to = 3 s). 
(a)x=5mm,An=(y-0.16)mm: I,y=O.16mm;2,y=O.45mm;3,y=O.8mm;4,y= 1.77mm;S. 

y=2.65mm.(b)x=15mm.An=(y-O.I5)mm:1,y=0.15mm;2,y=0.45mm;3,y=3.32mm. 
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FIG. 16. The velocity and temperature protiles far from a periodically varying heat Hux at I~ = 3 s and 
Q= 17Wm-‘. 

x(mm) 

n I - 1.5 
2- 2.7 
3-5 

I / I 
3 5. 

6 I2 18 24 

t (5) 

FIG. 17. Variations of the free surface temperature in time for different values of I in the layer L = 105 
mm, .Y, = 370 mm, Q = 22 W m-‘, T, = 21.7’C and to = 12 s. 

6- 
X 

\ 
to- 12 s 

.- T 

characterizes the magnitude of the phase shift t+). +*\. 

The periodic flow can be assurned to propagate to 3% 
I I I 

50 100 150 
such a distance x,, from the heater which is covered xtmm1 

by the liquid at the free surface for the time com- FIG. 18. The maximum (T,,,), minimum CT,,) and mean 
mensurable with the fluctuation period at the heat flux (T) periodic temperature fluctuations on the free surface vs 
commensurable with the mean value of the latter. ‘I’ (lo = 12 s). 

mensurable with the period of heat loading variation. 
For example, for to = 3 s the phase shift of the 
maximum temperature at x = 25 mm comprises 
t,+/to = 0.7 and the temperature fluctuation amplitude 
is equal to O.OSr (Fig. 5); for f0 = 12 s and I = 49 
mm the phase shift is tQ/to = 0.7 and the temperature 
fluctuation amplitude is 0.04T (Fig. 17). Tine same is 
indicated by the space correlation functions calculated 
from the experimental data (Figs. I 1 and 20) : the time 
shift 7,,, corresponding to the maximum value of 
R(An, T) (for An comparable with x,,) is smaller than 
the heat flux fiuctuation period (the time shift t,,, 
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FIG. 19. The autocorrelation functions of temperature fluctuations on the free surface for different values 
of I (to = 12 s). 

IO 

;: 
05 

. 

d 

c O 

-05 

-I 0 

FIG. 20. The space-time correlation functions of temperature fluctuations on the free surface for different 
shifts: An = (x- 1.5) mm, to = 12 s. 1, x = 1.5 mm; 2, x = 5 3, mm; x = 11 mm; 4, x = 21.7 mm; 5, 

x = 30.6 mm ; 6, x = 39.8 mm ; 7, x = 59.2 mm. 

x-7.3mm 

FIG. 21. The longitudinal temperature gradient (U/dx),. the velocity gradient (&/QJ)~ and the friction 
r,,/p on the free surface for different values of x (I,, = 12 s). 



1662 A. G. ~YASHKIN et aI. 

_- 
‘02 

g 
\ 

3 

x (mm1 

FIG. 22. The maximum (I), mean (2) and minimum (3) 
values of TO/P, (~~/~y)~ and (dT/dx), on the free surface 

(to = 12 s). 

In the region of the existence of periodic flow, there 
exist the greatest temperature gradients along the sur- 
face (Figs. 6 and 18) and thermocapillary forces which 
are much in excess of thermogravitational forces. 
Therefore, it is possible to set g = 0 in equation (1). 

Assuming for v -, zc 

CT/C?y = 0, 7(z) = const., ~1 = c = 0 (28) 

as the boundary conditions on the outer part of 
the boundary layer (Q = const.), equations (I)-(3) at 
g = 0 and boundary conditions (4) and (28) can be 
presented in the form of the differential equations 

4$‘“++$“+2# = 0 

4Pr-’ +(@)’ = 0 (29) 

where 

I I I I 

0 6 12 I8 24 

t (5) 

FIG. 23. Temperature variations in time for different values of y at f0 = 12 s. (a) 1. _v = 0, I = I.5 mm, 
_~=9mm;2,y=0.2mm;3.y=0.36mm;4,y= 1.17mm; 5,y= 1.7mm;6.y=2.58mm:7,y=3.46 
mm;8,y=4.55mm.(b) I,y=O,x=1.5mm,x=25mm:2,y=0.14mm;3,y=0.7mm;4,y=1.7 

mm;5,y=2.77mm;6.y=4.26mm;7,y=6.08mm;8,y=8.56mm. 
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I I I I I I 
0 2 4 

yhNn~6 
8 

FIG. 24. The mean values Tand mean-square temperature fluctuations over the layer depth (to = 12 s). 

Physically, boundary conditions (28) cannot be equation (29) exists under boundary conditions (4) 

realized for the outer part of the boundary layer in a and (28). 

steady flow, as testified by the experimental inves- Boundary conditions (28) for y >> S(f 4 co) have a 

tigations described above. Mathematically, it is common feature with actual conditions (6), lying on 
necessary to prove whether or not the solution to the fact that in actual conditions the heat flux is also 

(b) 
I 

I 

I 

I 

I 

31 
a 

FIG. 25. The autocorrelation functions of temperature fluctuations over the layer depth (to = I2 s). (a) 
x = 9 mm. (b) x = 25 mm. 
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FIG. 26. The space-time correlation functions of temperature fluctuations over the layer depth for different 
shifts An(l,, = 12 s). (a) x = 9 mm, An = (v-0.2) mm: I, y = 0.2 mm; 2, ,v = 0.66 mm: 3. 1’ = 1.7 mm; 
4, y = 4.55 mm. (b) x = 25 mm, An = (y-0.14) mm: I, y = 0.14; 2, )? = 0.7 mm; 3. .v = I.7 mm; 4, 

y = 2.77 mm; 5, y = 8.56 mm. 

absent at the edge of the boundary layer. The differ- 
ence consists of the fact that at the edge of the bound- 
ary layer in the boundary-value problem considered 
c = u, = const., Tvaries by law (6) and, therefore, the 
self-similar solution (30) does not exist for the ‘outer 
part’ of the boundary layer. 

It is assumed that the velocity of the periodic flow 
propagation is comparable with that of the liquid 
motion on the free surface at 0 = const. 

t,(s) 
--3 

e-6 

A - i2 

. - 24 

(31) 

then 

(32) 

and 

s,(p’vc ,‘b@‘)‘i3 
FIG. 27. The amplitude (AT,,) of periodic temperawe 

P 0 = const. (33) fluctuations on the free surface 1.5 ‘x’. 
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t,(s) 
O-3 
+-6 
.- 12 
. - 24 

x (mm) 

FIG. 28. The mean-square temperature on the free surface vs ‘x’. 

Figures 27 and 28 give the amplitudes oC the periodic 
disturbances and mean-square temperature fluctu- 
ations along the free surface for different values of 
t,,. The damping length for the periodic disturbances 
x,, is determined from Figs. 27 and 28 from the inter- 
section of the averaging curves with the x-axis. 

As in the case of the propagation of periodic flows 
in a plane layer [l], relation (33) is confirmed within 
experimental accuracy for t, = 3-24 s 

x&/qJbQt~)“3 = 1.5. 

do not exert an appreciable effect on the damping 
length of periodic flows (x,,). On the other hand, the 
steady flows are governed by the interaction between 
the thermocapillary and thermogravitational forces. 
It should be expected that far from the heater, at 
large values of x, the thermogravitational forces will 
become predominant with a decrease in the gradient 

laT/axlo. 
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ECOULEMENTS THERMOCAPILLAIRES PERMANENTS ET PERIODIQUES DANS 
UNE COUCHE HORIZONTALE BEAUCOUP PLUS EPAISSE QUE LA COUCHE 

LIMITE A LA SURFACE LIBRE 

R&urn&-On p&we les r&hats d’une etude exp&imentale sur les boulements thermocapillaires et 
thermogravitationnels dans une couche horizontale beaucoup plus kpaisse que la couche limite hydro- 
dynamique 4 la surface Iibre. I1 y a une source de chaleur lineique sous la surface libre et un puits thermique 
sur les faces verticales oppos&es. Pour un flux thermique constant, des couches limites se developpent sur 
la surface libre horizontale et sur les faces verticales froides. On p&ewe des profils de vitesse et de 
temp&ature mesun% dans les couches limites. Des solutions analytiques sent obtenues. Les configurations 
des &coulements firiodiques thermocapillaires ttudiks pour des p&odes innrieures P 24 s concement ; les 
temp&atures instantan& et moyennes, les valeurs moyennes et instantan& du coefficient de frottement 
P la surface libre, la variance des fluctuations de temfirature, les fonctions de corrklation espace-temps et 

les limites de la propagation des &oulements p&iodiques. 
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STETIGE UND PERIODISCHE THERMOKAPILLARE STRijMUNGEN IN EINER 
HORIZONTALEN FLUIDSCHICHT, DEREN DICKE SEHR VIEL GROSSER ALS 

DIE GRENZSCHICHT AN DER FREIEN OBERFLACHE IST 

Zusanunenfassung-In dieter Arbeit werdcn die Ergebnisse einer experimentellen Untersuchung von thermo- 
kapillaren und auftriebsbedingten StrGmungen in einer horizontalen Fluidschicht vorgestellt, deren Dicke 
sehr vie1 grol3er als die der hydrodynamischen Grenzschicht an der freien Oberfllche ist. Unterhalb 
der freien Oberflache befindet sich eine lineare WIrmequelle. an der gegeniiberliegenden senkrechten 
Wand eine Wlrmesenke. Bei konstanter Warmestromdichte bilden sich Grenzschichten entlang der hori- 
zontalen freien Oberflache und der senkrechten Kiihlfliche aus. Die in den Grenzschichten gemessenen 
Geschwindigkeirs- und Temperaturprofile werden dargestellt. Die Grenzschicht an der Kiihlfllche sowie 
der Bereich auBerhalb der Grenzschicht wird analytisch berechnet. Die Form der periodischen thermokapil- 
laren Stromungen mit einer Periodendauer kleiner als 24 s wird untersucht. Dabei werden folgende 
Gr&n bestimmt : die momentanen und die zeitlich gemittelten Temperaturen. die momentanen und die 
zeitlich gemittelten Werte des Reibungskoeffizienten an der freien Oberfllche, die Varianz der Temperatur- 
schwankungen. die zeitlich-raumlichen Korrelationsfunktionen und die Grenzen der Ausbreitung der 

periodischen Stromungen. 

TEPMOKAfUIJlRPHbIE CTAIJMOHAPHbIE ki I’IEPHO~H~ECKME TE9EHMII B 
FOPM30HTAJIbHOM CJTOE, MHOI-0 6OJTbLUEM TOJIJ.QkiHbI ITOFPAHW9HOI-0 CJIOIi 

Y CBO6OflHOft I-IOBEPXHOCTH 

AIIEO~IIW---B CTaTbe H3JlaraX)TCR pe3yJlbTaTbI 3KClIepHMeHTaJIbHbIX HCCJleLlOBaHHZi TepMoranmmIp- 

HblX H TepMO~aBHTa~OHHblX Te'leHHfi B rOpH30HTUbHOP.4 CflOe,MHOrO 6onbutew TOJ-IIJlHHbl rWlpO/.Vi- 

HarmwcKoro norpa~worocnoa ycao6o~ok nosepx~omi.JImietiarii ~TOYHHK Tennapacnonoxee 

nOnCBO~~O~flOBepw~b~,O~a~eHHe-y BepTHKaJIbHOrO lIpOTHBOflOJTOlKHOrO TOpIIa.~pH IIOC- 

~0XH140btTeM0~0~noToKe opraHH3yloTcnnorpaHHsHble ~OHyCBO6ODiOkrOpH30HTUlbHO~HoXJlaXC- 
namueii SepTRxw~oii nonepx~o~m.IIpencraane~~ mbiepewn npo@i.nel cropomi H TermepaTypbl 

B norpammi~x cnom. IlonyseHbl aHa.mrtixCKne peurenm mr IIOrpaHWIHOrO man y 0mamamueG 

nOBepXHoCTli Ii BHe nOr~HHWblX CJlOeB. kIccneL4yeTCJi CTpyKTypa I'IepHOJlHWCKHX TepMOK.NUiJUIKpHbIX 

TeveHHfi npH neptfonax, MeHbUIHX 24 C:ZUCTyaJlbHble H CpWIfHe 3HBYeHHX TeMnepaTypbx,aKTyanbHble Ii 
cpeneife 3iiaqewm ro3@mufeHra ~petuin y cBo6on1iol noeepxeocrn,nncnepcnn nynbcatuni tehmepa- 
Typbr, IlpOCTpaHOCTBeHHO-BpMeHHMe KOppeJIXIWOHHbIe +YHKWH, rpaHHUbl pacnpompaHeHHn nepao- 


